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Administration

● Help Centre is open.
● BA 2270 M-R 2-4.

● CDF is closed from M Jun 4th 5pm to 11am T 
June 5th. 

● Exercise 1 deadline extended to Sunday.
● Exercise 2 will be posted before next Lecture.
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Last Week

● More Functions.
● print makes the computer show something on the 

screen.
● return ends a function and causes it to return the 

value of the expression.
● Function documentation.

– The first line after a function should be a description of 
what it does enclosed in '''.

● Returned by help(function_name).

● Function design.
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Last Week

● Scope.
● Variable scope is used to determine which variable 

is used when there are multiple variables with the 
same name.

● Variables can be global and local.
– local variables are defined within functions.
– global variables are defined in the body of code.

● To determine which variable is used if there are 
multiple function calls we use a call stack.
– Each time there is a function call, a new namespace is 

created on the call stack.
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Last Week

● Booleans.
● New type.
● Can be True or False.
● Can compare booleans with and, or, not.
● Can use relational operators to generate booleans.

– <, >, <=, >=, !=, ==.

● Conditionals.
● Used to selectively execute blocks of code based 

on booleans.
● if, else, elif.
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Using text

● So far we've seen three types:
● ints, floats, and booleans.

● Allow for number manipulation and logic 
manipulation

● Don't allow for text manipulation.
● Text manipulation needs a new type - strings.

● A string is a sequence of characters.
● A character is a single letter/punctuation mark/etc.
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Strings

● Two types: str and unicode.
● We'll use str in this course.
● It contains the roman alphabet, numbers a few 

symbols.

● Use str to refer to the type in docstrings.
● '''NoneType -> str'''

● Strings are denoted by single or double quotes.
● “This is a string”
● 'This is not”

● “” is an empty string.
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String operations

● Strings can be 'added'.

● We call this concatenation.
● “str” + “ing” results in “string”.

● Can also be multiplied, sort of.

● You can't multiply a string with itself, but the 
multiplication operator functions as a copy.

● So “copy”*3 results in “copycopycopy”.
● None of the other arithmetic operators are defined for 

strings.

● so /, -, **, and % generate errors.
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String operations

● Can also compare strings using relational operators.

● So two strings can be compared using <,>, !=, etc.
● If the letters are all upper case or all lower case, the 

order is lexicographic (dictionary style).
● Upper case letters are 'smaller' than lower case 

letters, which can cause odd behaviour.
– 'aaa' < 'ab'

– 'aaa' < 'aB'

● Can compare punctuation marks, but there's no 
intuition for the results.
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String operations

● Can check if substrings are in a string using in.

● possible_substring in big_string returns 
True iff possible_substring is in big_string.

● possible_substring needs to be contiguously 
within big_string for this to return True, it will return 
False otherwise.

● Long strings that span multiple lines can be made using '''.

● Note that this relates to docstrings.
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Escape Characters

● Denoted by a backslash, they indicate to python 
that the next character is a special character.
● \n - a new line
● \' - a single quote
● \” - a double quote
● \\ - a backslash
● \t - a tab.
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String functions

● len(string) will return an int that is the 
number of characters in the string.

● ord(char) will return the integer code of that 
character.

● chr(x) will return a character that corresponds 
to the integer x.

● x should be between 0 and 255.
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Type Conversions

● If we want to add a number or boolean to a string, we 
need to convert it to a string first.

● str(x) converts x to a str.

● This is automatically done when print is used.

● Strings can be converted to booleans.

● False iff string is empty.
● Strings of numbers can be converted to floats or 

integers.

● Strings of numbers with one decimal point can be 
converted to floats.
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Mixing strings with other types

● Print can display mixed types.
● They must be separated with a comma.
● print “string”, x, “ “, real_num

● Can be awkward.
● print “Person“, name, “has height”, 
height, “age“, age, “weight“, weight
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String formatting

● Can use special characters to tell python to 
insert a type into a string.

● print “My age is %d.” % age

● The %d tells python to take age, and format it as 
an integer.

● %s says to take a value and format it as a 
string.

● %f says to take a value and format it as a float.

● %.2f says to pad the float to 2 decimal places.
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Multiple variables

● What if we want multiple variables in our string?
● print “Person“, name, “has height”, \  
  height, “age“, age, “weight“, weight

● We put them in parentheses separated by 
commas.
● print “Person %s has weight %.2f \

   and age %d and height %d.“ \

   % (name, weight, age, height)
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Break, the first
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User input

● Thus far, the only way we've had of giving input 
to a program is to hardcode it in the code.

● Inefficient and not user-friendly.
● Python allows us to ask for user input using 

raw_input().
● Returns a string!

● So it may need to be converted.
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Modules

● Sometimes we want to use other people's code.
● Or make our own code available for use.
● But we don't want to mix our code with that of 

others.
● Modules allow us to do this.
● A Module is a group of related functions and 

variables.
● Each file in python is a module.
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Using modules

● To use a module, one needs to import it.
● Importing a module causes python to run each 

line of code in the module.
● To use a function in a module one uses.

    module_name.function_name()
● We can also run a module. Then we just use 
function_name()
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Using modules

● Note that we can run files, and each file is a 
module.
● If we are just running a file, then we only use the 

function name, not 
module_name.function_name

● Functions defined within a module are local 
functions, in the same way that variables within a 
function are local variables.

● Global variables within a module can be accessed 
by module_name.variable_name.
– Rare that this is necessary.
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Importing Modules

● When a file is imported, every line in the file is 
run.
● It it is just function definitions this doesn't cause 

much trouble.
● But it can be annoying if there is code that you don't 

care about or testing code in the module.
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__name__

● In addition to variables that are defined in the 
module, each module has a variable that is 
called __name__.

● If we import a module called module_m, then
module_m.__name__ == “module_m”

● But if we run a module, then
● __name__ == “__main__”

● Recall that if we are running a module, we don't 
need the module name as a prefix.
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if __name__ == '__main__'

● It is very common to see modules that have the 
following code:

if __name__ == '__main__':          
    block

● The block will be executed if the module is 
being run.

● A useful place to put testing code.
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Another way to import things.

● from module_name import fn_name1(), fn_name2()

● Will import fn_name1 and fn_name 2
● These functions are referenced by just 
fn_name1()

● Can also use * as a wildcard to import all the 
functions.
● from module_name import *

● What if two modules have a function with the 
same name?

● The most recent one stays.
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Break, the second.
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Methods

● We've seen that modules can have their own 
functions.

● A similar thing is true of values.
● Values contain functions that assume one of the 

inputs is the value. We call these methods.
● These are called by value.fn_name()
● Or, if we've assigned a value to a variable we 

can use variable_name.fn_name()

● We can call help(type) to figure out what 
methods a type has available to it.
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String methods

● Can find them by using x .
● Useful ones include:
● s.replace(old, new) -  a copy of s with all 

instances of old replaced by new.

● s.count(substr) – return the number of 
instances of substr in the string.

● s.lower() - shift to lower case letters.

● s.upper() - shift to capitalised letters.

● None of these change s.
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Getting method information

● Most direct way is to use help().
● But help isn't searchable. Can use dir() to 

browse.
● Sometimes you know what you want, and you think 

it might already exist.

● An alternative is to check the standard library:
● http://docs.python.org/library/
● Being able to browse this is useful skill.

● Modules are found in:
● http://docs.python.org/py-modindex.html

http://docs.python.org/library/
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Remember!

● Functions belong to modules.
● Methods belong to objects.

● All of the basic types in python are objects.
● We will learn how to make our own later.
● This is covered in greater detail in 148.

● len(str) is a function

● str.lower() is a method.
● Subtle but important distinction.
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Lab Review

● Next weeks lab covers Booleans and 
conditionals.

● You need to:
● Be comfortable with using boolean operators (and, 
or, not) on booleans.

● Using if statements to selectively execute blocks 
of code based on the value of boolean expressions.
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