
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

May 31 2012

Administration

● Help Centre is open.
● BA 2270 M-R 2-4.

● CDF is closed from M Jun 4th 5pm to 11am T
June 5th.

● Exercise 1 deadline extended to Sunday.
● Exercise 2 will be posted before next Lecture.

May 31 2012

Last Week

● More Functions.
● print makes the computer show something on the

screen.
● return ends a function and causes it to return the

value of the expression.
● Function documentation.

– The first line after a function should be a description of
what it does enclosed in '''.

● Returned by help(function_name).

● Function design.

May 31 2012

Last Week

● Scope.
● Variable scope is used to determine which variable

is used when there are multiple variables with the
same name.

● Variables can be global and local.
– local variables are defined within functions.
– global variables are defined in the body of code.

● To determine which variable is used if there are
multiple function calls we use a call stack.
– Each time there is a function call, a new namespace is

created on the call stack.

May 31 2012

Last Week

● Booleans.
● New type.
● Can be True or False.
● Can compare booleans with and, or, not.
● Can use relational operators to generate booleans.

– <, >, <=, >=, !=, ==.

● Conditionals.
● Used to selectively execute blocks of code based

on booleans.
● if, else, elif.

May 31 2012

Using text

● So far we've seen three types:
● ints, floats, and booleans.

● Allow for number manipulation and logic
manipulation

● Don't allow for text manipulation.
● Text manipulation needs a new type - strings.

● A string is a sequence of characters.
● A character is a single letter/punctuation mark/etc.

May 31 2012

Strings

● Two types: str and unicode.
● We'll use str in this course.
● It contains the roman alphabet, numbers a few

symbols.

● Use str to refer to the type in docstrings.
● '''NoneType -> str'''

● Strings are denoted by single or double quotes.
● “This is a string”
● 'This is not”

● “” is an empty string.

May 31 2012

String operations

● Strings can be 'added'.

● We call this concatenation.
● “str” + “ing” results in “string”.

● Can also be multiplied, sort of.

● You can't multiply a string with itself, but the
multiplication operator functions as a copy.

● So “copy”*3 results in “copycopycopy”.
● None of the other arithmetic operators are defined for

strings.

● so /, -, **, and % generate errors.

May 31 2012

String operations

● Can also compare strings using relational operators.

● So two strings can be compared using <,>, !=, etc.
● If the letters are all upper case or all lower case, the

order is lexicographic (dictionary style).
● Upper case letters are 'smaller' than lower case

letters, which can cause odd behaviour.
– 'aaa' < 'ab'

– 'aaa' < 'aB'

● Can compare punctuation marks, but there's no
intuition for the results.

May 31 2012

String operations

● Can check if substrings are in a string using in.

● possible_substring in big_string returns
True iff possible_substring is in big_string.

● possible_substring needs to be contiguously
within big_string for this to return True, it will return
False otherwise.

● Long strings that span multiple lines can be made using '''.

● Note that this relates to docstrings.

May 31 2012

Escape Characters

● Denoted by a backslash, they indicate to python
that the next character is a special character.
● \n - a new line
● \' - a single quote
● \” - a double quote
● \\ - a backslash
● \t - a tab.

May 31 2012

String functions

● len(string) will return an int that is the
number of characters in the string.

● ord(char) will return the integer code of that
character.

● chr(x) will return a character that corresponds
to the integer x.

● x should be between 0 and 255.

May 31 2012

Type Conversions

● If we want to add a number or boolean to a string, we
need to convert it to a string first.

● str(x) converts x to a str.

● This is automatically done when print is used.

● Strings can be converted to booleans.

● False iff string is empty.
● Strings of numbers can be converted to floats or

integers.

● Strings of numbers with one decimal point can be
converted to floats.

May 31 2012

Mixing strings with other types

● Print can display mixed types.
● They must be separated with a comma.
● print “string”, x, “ “, real_num

● Can be awkward.
● print “Person“, name, “has height”,
height, “age“, age, “weight“, weight

May 31 2012

String formatting

● Can use special characters to tell python to
insert a type into a string.

● print “My age is %d.” % age

● The %d tells python to take age, and format it as
an integer.

● %s says to take a value and format it as a
string.

● %f says to take a value and format it as a float.

● %.2f says to pad the float to 2 decimal places.

May 31 2012

Multiple variables

● What if we want multiple variables in our string?
● print “Person“, name, “has height”, \
 height, “age“, age, “weight“, weight

● We put them in parentheses separated by
commas.
● print “Person %s has weight %.2f \

 and age %d and height %d.“ \

 % (name, weight, age, height)

May 31 2012

Break, the first

May 31 2012

User input

● Thus far, the only way we've had of giving input
to a program is to hardcode it in the code.

● Inefficient and not user-friendly.
● Python allows us to ask for user input using

raw_input().
● Returns a string!

● So it may need to be converted.

May 31 2012

Modules

● Sometimes we want to use other people's code.
● Or make our own code available for use.
● But we don't want to mix our code with that of

others.
● Modules allow us to do this.
● A Module is a group of related functions and

variables.
● Each file in python is a module.

May 31 2012

Using modules

● To use a module, one needs to import it.
● Importing a module causes python to run each

line of code in the module.
● To use a function in a module one uses.

 module_name.function_name()
● We can also run a module. Then we just use
function_name()

May 31 2012

Using modules

● Note that we can run files, and each file is a
module.
● If we are just running a file, then we only use the

function name, not
module_name.function_name

● Functions defined within a module are local
functions, in the same way that variables within a
function are local variables.

● Global variables within a module can be accessed
by module_name.variable_name.
– Rare that this is necessary.

May 31 2012

Importing Modules

● When a file is imported, every line in the file is
run.
● It it is just function definitions this doesn't cause

much trouble.
● But it can be annoying if there is code that you don't

care about or testing code in the module.

May 31 2012

__name__

● In addition to variables that are defined in the
module, each module has a variable that is
called __name__.

● If we import a module called module_m, then
module_m.__name__ == “module_m”

● But if we run a module, then
● __name__ == “__main__”

● Recall that if we are running a module, we don't
need the module name as a prefix.

May 31 2012

if __name__ == '__main__'

● It is very common to see modules that have the
following code:

if __name__ == '__main__':
 block

● The block will be executed if the module is
being run.

● A useful place to put testing code.

May 31 2012

Another way to import things.

● from module_name import fn_name1(), fn_name2()

● Will import fn_name1 and fn_name 2
● These functions are referenced by just
fn_name1()

● Can also use * as a wildcard to import all the
functions.
● from module_name import *

● What if two modules have a function with the
same name?

● The most recent one stays.

May 31 2012

Break, the second.

May 31 2012

Methods

● We've seen that modules can have their own
functions.

● A similar thing is true of values.
● Values contain functions that assume one of the

inputs is the value. We call these methods.
● These are called by value.fn_name()
● Or, if we've assigned a value to a variable we

can use variable_name.fn_name()

● We can call help(type) to figure out what
methods a type has available to it.

May 31 2012

String methods

● Can find them by using x .
● Useful ones include:
● s.replace(old, new) - a copy of s with all

instances of old replaced by new.

● s.count(substr) – return the number of
instances of substr in the string.

● s.lower() - shift to lower case letters.

● s.upper() - shift to capitalised letters.

● None of these change s.

May 31 2012

Getting method information

● Most direct way is to use help().
● But help isn't searchable. Can use dir() to

browse.
● Sometimes you know what you want, and you think

it might already exist.

● An alternative is to check the standard library:
● http://docs.python.org/library/
● Being able to browse this is useful skill.

● Modules are found in:
● http://docs.python.org/py-modindex.html

http://docs.python.org/library/

May 31 2012

Remember!

● Functions belong to modules.
● Methods belong to objects.

● All of the basic types in python are objects.
● We will learn how to make our own later.
● This is covered in greater detail in 148.

● len(str) is a function

● str.lower() is a method.
● Subtle but important distinction.

May 31 2012

Lab Review

● Next weeks lab covers Booleans and
conditionals.

● You need to:
● Be comfortable with using boolean operators (and,
or, not) on booleans.

● Using if statements to selectively execute blocks
of code based on the value of boolean expressions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

